Chapter 4 Systems Design: Process Costing

Solutions to Questions

4-1 A process costing system should be used in situations where a homogeneous product is produced on a continuous basis.

4-2

1. Job-order costing and process costing have the same basic purposes-to assign materials, labor, and overhead cost to products and to provide a mechanism for computing unit product costs.
2. Both systems use the same basic manufacturing accounts.
3. Costs flow through the accounts in basically the same way in both systems.

4-3 Costs are accumulated by department in a process costing system.

4-4 In a process costing system, the activity performed in a department must be performed uniformly on all units moving through it and the output of the department must be homogeneous.

4-5 Cost accumulation is simpler under process costing because costs only need to be assigned to departments-not separate jobs. A company usually has a small number of processing departments, whereas a job-order costing system often must keep track of the costs of hundreds or even thousands of jobs.

4-6 In a process costing system, a Work in Process account is maintained for each separate processing department.

4-7 The journal entry would be: Work in Process, Firing XXXX Work in Process, Mixing. $\quad X X X X$

4-8 The costs that might be added in the Firing Department include: (1) costs transferred in from the Mixing Department; (2) materials costs added in the Firing Department; (3) labor costs added in the Firing Department; and (4) overhead costs added in the Firing Department.

4-9 Under the weighted-average method, equivalent units of production consist of units transferred to the next department (or to finished goods) during the period plus the equivalent units in the department's ending work in process inventory.

4-10 A quantity schedule summarizes the physical flow of units through a department during a period. It serves several purposes. First, it provides information about activity in the department and also shows the stage of completion of any in-process units. Second, it provides data for computing the equivalent units and for preparing the other parts of the production report.

4-11 In process costing a unit of product accumulates cost in each department that it passes through, with the costs of one department added to the costs of the preceding department in a snowballing fashion.

4-12 The company will want to distinguish between the costs of the metals used to make the medallions, but the medals are otherwise identical and go through the same production processes. Thus, operation costing is ideally suited for the company's needs.

4-13 Any company that manufactures products that have some common characteristics and some individual characteristics may want to use operation costing. Examples include textiles, shoes, electronic parts, and clothing.

4-14 Under the FIFO method, units transferred out are divided into two parts. One part consists of the units in the beginning inventory. Only the work needed to complete these units is shown as part of the equivalent units for the current period. The other part of the units transferred out consists of the units started and completed during the current period; these units are shown as a separate amount in the equivalent units computation under the FIFO method.

4-15 Under the FIFO method, units transferred out are divided into two groups. The first group consists of units from the beginning work
in process inventory. The second group consists of units started and completed during the period.

4-16 The FIFO method is superior to the weighted-average method for cost control because current performance should be measured in relation to costs of the current period only, and the weighted-average method mixes these costs in with costs of the prior period. Thus, under the weighted-average method, the department's apparent performance in the current period is influenced to some extent by what happened in a prior period.

Exercise 4-1 (20 minutes)

23,000		
Work in Process-Firing Department.	8,000	
Raw Materials		31,000
b. To record direct labor costs incurred:		
Work in Process-Molding Department	12,000	
Work in Process-Firing Department	7,000	
Wages Payable		19,000
c. To record applying manufacturing overhead:		
Work in Process-Molding Department	25,000	
Work in Process-Firing Department	37,000	
Manufacturing Overhead		62,000
d. To record transfer of unfired, molded bricks from the Molding Department to the Firing Department:		
Work in Process-Firing Department...........	57,000	
Work in Process-Molding Department		57,000
e. To record transfer of finished bricks from the Firing Department to the finished bricks warehouse:		
Finished Goods	103,000	
Work in Process-Firing Department		103,000
f. To record Cost of Goods Sold:		
Cost of Goods Sold.	101,000	
Finished Goods........		101,000

Exercise 4-2 (10 minutes)

Weighted-Average Method

	Equivalent Units (EU)	
	Materials	Conversion
Units transferred out	190,000	190,000
Work in process, ending:		
15,000 units $\times 80 \%$	12,000	
15,000 units $\times 40 \%$		6,000
Equivalent units	202,000	196,000

Exercise 4-3 (10 minutes)

FIFO Method

Equivalent Units (EU)
Materials Conversion
Work in process, beginning:
30,000 units $\times 35 \%$ * 10,500
30,000 units $\times 70 \% * \ldots . ~ 21,000$
Started and completed during October** 160,000 160,000
Work in process, ending:
15,000 units $\times 80 \%$................................ 12,000
15,000 units $\times 40 \% \ldots \ldots$
Equivalent units 182,500 187,000

* Work needed to complete these units.
** 175,000 units started - 15,000 units in ending work in process = 160,000 started and completed

Exercise 4-4 (15 minutes)

Weighted-Average Method
Tons

1. Work in process, June 1 20,000
Started into production during the month 190,000
Total tons in process 210,000
Deduct work in process, June 30 30,000
Completed and transferred out during the month 180,000
2. Tons to be accounted for:
Work in process, June 1 (materials 90\% complete, labor and overhead 80\% complete) 20,000
Started into production during the month 190,000
Total tons to be accounted for $\underline{\underline{210,000}}$
Tons accounted for as follows:
Transferred out during the month. 180,000
Work in process, June 30 (materials 60\% complete, labor and overhead 40% complete) 30,000
Total tons accounted for 210,000

Exercise 4-5 (15 minutes)

FIFO Method

1. The number of tons completed and transferred out during the month is the same regardless of the costing method used. Thus, as in the similar exercise that is based on the weighted-average method, 180,000 tons would have been completed and transferred out. However, under the FIFO method we must break this down between the tons that were completed from the beginning inventory and the tons started and completed during the current period. This breakdown is shown in Part 2 below:
2. Tons to be accounted for:

Work in process, June 1 (materials 90% complete; labor and overhead 80\% complete) 20,000
Started into production during the month 190,000
Total tons to be accounted for
210,000
Tons accounted for as follows:
Transferred out during the month:
Tons from the beginning inventory..................... 20,000
Tons started and completed during the month 160,000 *
Work in process, June 30 (materials 60\% complete; labor and overhead 40\% complete) 30,000
Total tons accounted for.. 210,000

* 190,000 tons started into production - 30,000 tons in ending work in process $=160,000$ tons started and completed.

Exercise 4-6 (15 minutes)

Weighted-Average Method
1.

| | Materials | Labor | Overhead |
| :--- | ---: | ---: | ---: | ---: |
| Work in process, May $1 \ldots \ldots$. | $\$ 18,000$ | $\$ 5,500$ | $\$ 27,500$ |
| Cost added during May................ | $\underline{238,900}$ | $\underline{80,300}$ | $\underline{401,500}$ |
| Total cost (a)......................... | $\underline{\$ 256,900}$ | $\underline{\$ 85,800}$ | $\underline{\$ 429,000}$ |
| Equivalent units of production (b) $\ldots .$. | 35,000 | 33,000 | 33,000 |
| Cost per equivalent unit (a) $\div(\mathrm{b}) \ldots .$. | $\$ 7.34$ | $\$ 2.60$ | $\$ 13.00$ |

2.

Cost per EU for materials.......... \$ 7.34
Cost per EU for labor................ 2.60
Cost per EU for overhead $\quad 13.00$
Total cost per EU \$22.94

Exercise 4-7 (20 minutes)

Weighted-Average Method

1. Computation of the total cost per EU:

Cost per EU for materials.......... \$12.50
Cost per EU for labor................ 3.20
Cost per EU for overhead 6.40
Total cost per EU \$22.10
2. Computation of equivalent units in ending inventory:

	Materials	Labor	Overhead
Units in ending inventory	3,000	3,000	3,000
Percentage completed............	80%	60%	60%
Equivalent units of production....	2,400	1,800	1,800

3. Cost Reconciliation

	Total Cost	Materials	Labor	Over- head
Cost accounted for as follows:				
Transferred to the next de-				

Exercise 4-8 (10 minutes)

FIFO Method

1.		Materials	Labor	Overhead
Cost added during May (a) $\$ 193,320$	$\$ 62,000$	$\$ 310,000$		
Equivalent units of production (b) \ldots	27,000	25,000	25,000	
Cost per equivalent unit (a) \div (b) \ldots.	$\$ 7.16$	$\$ 2.48$	$\$ 12.40$	
2.Cost per EU for materials...... $\$ 7.16$ Cost per EU for labor........... 2.48 Cost per EU for overhead..... $\underline{12.40}$ Total cost per EU $\underline{\$ 22.04}$				

Exercise 4-9 (45 minutes)

FIFO Method

1. Computation of the total cost per EU:

Cost per EU for material $\$ 25.40$
Cost per EU for conversion 18.20
Total cost per EU \$43.60
2. Computation of equivalent units in ending inventory:

	Materials	Conversion
Units in ending inventory	300	300
Percentage completed..........	70%	60%
Equivalent units of production...	210	180

3. Computation of equivalent units required to complete the beginning inventory:

	Materials	Conversion
Units in beginning inventory	400	400
Percentage uncompleted	20%	60%
Equivalent units of production...	80	240

4. Units transferred to the next department............. 3,100

Units from the beginning inventory...................... $\quad 400$
Units started and completed during the period $\underline{\underline{2,700}}$

Exercise 4-9 (continued)

5. Cost Reconciliation

$$
\text { Total Cost } \frac{\text { Equivalent Units }}{\text { Materials Conversion }}
$$

Cost accounted for as follows:
Transferred to the next department:
From the beginning inventory:
Cost in the beginning inventory
\$ 11,040
Cost to complete these units:
Materials at $\$ 25.40$ per EU
2,032
80
Conversion at $\$ 18.20$ per EU
4,368
240
Total cost from beginning inventory
17,440
Units started and completed this month at \$43.60
per unit
117,720
2,700
2,700
Total cost transferred to the next department.
135,160
Work in process, ending:
Materials at $\$ 25.40$ per EU .. 5,334 210
Conversion at $\$ 18.20$ per EU $\ldots \ldots .$.
180
Total work in process, ending...................................... $\quad 8,610$
Total cost accounted for.
\$143,770
Exercise 4-10 (10 minutes)
Work in Process-Cooking 42,000
Raw Materials Inventory 42,000
Work in Process-Cooking 50,000
Work in Process-Molding 36,000
Wages Payable. 86,000
Work in Process-Cooking 75,000
Work in Process-Molding 45,000
Manufacturing Overhead 120,000
Work in Process-Molding 160,000
Work in Process-Cooking 160,000
Finished Goods 240,000
Work in Process-Molding 240,000

Exercise 4-11 (15 minutes)

Weighted-Average Method

> Quantity
> Schedule

Pounds to be accounted for:
Work in process, July 1 (materials 100\% complete, conversion 30\% complete)

20,000
Started into production during July... 380,000 Total pounds to be accounted for $\underline{\underline{400,000}}$

Equivalent Units (EU) Materials Conversion

Pounds accounted for as follows:
Transferred to next department during July* 375,000 375,000 375,000
Work in process, July 31 (materials 100\% complete, conversion 60\% complete)

25,000
$25,000 \quad 15,000$
Total pounds accounted for............... 400,000 $\underline{\underline{400,000} \text { 390,000 }}$

* 20,000 $+380,000-25,000=375,000$

Exercise 4-12 (15 minutes)

FIFO Method

Quantity
 Schedule

Pounds to be accounted for:
Work in process, July 1 (materi-
als 100\% complete, conver-
sion 30\% complete) 20,000
Started into production during
July.. 380,000
Total pounds to be accounted for ... $\underline{\underline{400,000}}$
Equivalent Units (EU)
Materials Conversion
Pounds accounted for as follows
Transferred to next department:
From the beginning inventory.... 20,000 0 14,000 *
Started and completed this month**.............................. 355,000

355,000 355,000
Work in process, July 31 (materials 100\% complete, conversion 60\% complete) 25,000

25,000
15,000
Total pounds accounted for............ 400,000 $\underline{\underline{380,000}}$ 晋4,000

* Work required to complete these units: 20,000 pounds $\times(100 \%-30 \%)=14,000$ pounds.
** 380,000 pounds started - 25,000 pounds in ending work in process inventory $=355,000$ pounds started and completed this month.

Exercise 4-13 (20 minutes)

Weighted-Average Method

1. For the sake of brevity, only the portion of the quantity schedule from which the equivalent units are computed is shown below.

Units accounted for as follows:

Transferred to the next process.	175,000	175,000	175,000
Work in process, May 31 (materials			
100\% complete, conversion 30\% complete)	10,000	10,000	3,000
tal units acc	185,000	185,000	$\underline{\underline{178,000}}$

2.

Cost to be accounted for:
Work in process, May 1
\$ 5,500
Cost added by the department 406,000
\$1,500 \$ 4,000

Total cost to be accounted for (a)
$\$ 411,500$
$\$ 555,500 \quad \$ 356,000$
Equivalent units (b)
185,000
178,000
Cost per equivalent unit (a) \div (b) \qquad $\$ 0.30+\quad \$ 2.00=\$ 2.30$

Exercise 4-14 (15 minutes)

Weighted-Average Method

> | Total | Equivalent Units (EU) | |
| :--- | :--- | :---: |
| Cost | Materials Conversion | |

Cost accounted for as follows:
Transferred to the next process (175,000 units $\times \$ 2.30$ per unit)
$\$ 402,500$
175,000
175,000
Work in process, May 31:
Materials, at $\$ 0.30$ per EU......... 3,000 10,000
Conversion, at $\$ 2.00$ per EU...... $\quad 6,000$
Total work in process.................. $\quad 9,000$
Total cost accounted for \$411,500
© The McGraw-Hill Companies, Inc., 2006. All rights reserved.

Exercise 4-15 (20 minutes)

FIFO Method

1. Quantity schedule and equivalent units:

	Quantity Schedule
Units to be accounted for:	
Work in process, May 1 (materials 100\% complete, conversion 40\% complete)	5,000
Started into production	180,000
Total units to be accounted for	185,000

Units accounted for as follows:
Transferred to the next process:
From the beginning inventory

5,000	0	3,000
170,000	170,000	170,000
$\underline{10,000}$	$\underline{10,000}$	$\underline{3,000}$
$\underline{185,000}$	$\underline{180,000}$	$\underline{176,000}$

* Work needed to complete the units in beginning inventory.
** 180,000 units started into production - 10,000 units in ending work in process $=170,000$ units started and completed

Exercise 4-15 (continued)

2.

	Total Cost	Materials	Conversion	Whole
Unit				

Exercise 4-16 (20 minutes)

FIFO Method

$$
\begin{array}{ll}
\text { Total } & \text { Equivalent Units (EU) } \\
\text { Cost } & \text { Materials Conversion }
\end{array}
$$

Cost accounted for as follows:			
Transferred to the next process:			
From the beginning inventory:			
Cost in the beginning inventory....	\$ 5,500		
Cost to complete these units:			
Materials, at \$0.30 per EU .	0	0	
Conversion, at \$2.00 per EU	6,000		3,000
Total cost from beginning inventory..	11,500		
Units started and completed this			
per unit.	391,000	170,000	170,000
Total cost transferred.	402,500		
Work in process, May 31:			
Materials, at \$0.30 per EU...............	3,000	10,000	
Conversion, at \$2.00 per EU............	6,000		3,000
Total work in process	9,000		
Total cost accounted for	\$411,500		

Exercise 4-17 (20 minutes)

Weighted-Average Method

1.

Quantity

Schedule
Units to be accounted for:
Work in process, beginning (materials 80\% complete, labor and overhead 60\% complete)............................ 5,000
Started into production............ $\quad 45,000$
Total units to be accounted for... $\underline{\underline{50,000}}$

Equivalent Units (EU)
Materials Labor Overhead

Units accounted for as follows:		Materials	Labor	Overhead
Transferred to the next department	42,000	42,000	42,000	42,000
Work in process, ending (materials 75\% complete, labor and overhead 50% complete) \qquad	8,000	6,000	4,000	4,000
Total units accounted for	50,000	$\underline{48,000}$	46,000	46,000

Exercise 4-17 (continued)

Exercise 4-18 (20 minutes)

FIFO Method

1.

$$
\begin{aligned}
& \text { Quantity } \\
& \text { Schedule }
\end{aligned}
$$

Units to be accounted for:
Work in process, beginning (materials 80% complete, labor and overhead 60\% complete) 5,000
Started into production.
45,000
Total units accounted for
50,000

Units accounted for as follows:
Transferred to the next department:
From the beginning inventory............................. 5,000 1,000 * 2,000 * 2,000 *
Started and completed this month** 37,000 37,000 37,000 37,000
Work in process, ending (materials 75\% complete,
labor and overhead 50\% complete)
Total units accounted for
$\underline{\underline{50,000}} \underline{\underline{44,000}} \underline{\underline{43,000}} \underline{\underline{43,000}}$

* Work required to complete the beginning inventory.
** 45,000 units started into production - 8,000 units in ending work in process $=37,000$ started and completed

Exercise 4-18 (continued)

2.

Whole
Unit

Problem 4-19 (45 minutes)

Weighted-Average Method
1., 2., and 3.

Quantity Schedule and Equivalent Units

	Quantity
	Schedule
Units to be accounted for:	
Work in process, May 1 (materials 100% complete; labor and overhead 80\% complete)	10,000
Started into production.	100,000
Total units to be accounted for	110,000

Problem 4-19 (continued)
Cost per Equivalent Unit

	Total cost	Materials	Labor	Overhead
Cost to be accounted for:				
Work in process, May 1	\$ 8,700	\$ 1,500	\$ 1,800	\$ 5,400
Cost added during the month	245,300	154,500	22,700	68,100
Total cost to be accounted for (a)...	\$254,000	\$156,000	\$24,500	\$73,500
Equivalent units (b)		104,000	98,000	98,000
Cost per equivalent unit (a) \div (b) ...		\$1.50 +	\$0.25 +	\$0.75
Cost Reconciliation				
	Total	Equivalent Units (EU)		
	Cost	Materials	Labor	Overhead
Cost accounted for as follows:				
Transferred out: 95,000 units \times				
Work in process, May 31:				
Materials, at \$1.50 per EU.........	13,500	9,000		
Labor, at $\$ 0.25$ per EU	750		3,000	
Overhead, at \$0.75 per EU........	2,250			3,000
Total work in process.................	16,500			
Total cost accounted for	\$254,000			

Problem 4-20 (45 minutes)

FIFO Method

1. 2., and 3.

Quantity Schedule and Equivalent Units

	Quantity Schedule
Units to be accounted for:	
Work in process, J uly 1 (materials 100\% complete; conversion 30% complete).	10,000
Started into production.	170,000
Total units to be accounted for	180,000

Equivalent Units
Materials Conversion

Units accounted for as follows:
Transferred to packaging:
From the beginning inventory....................... 10,000 0 7,000*
Started and completed this month** 150,000 150,000 150,000
Work in process, July 31 (materials 100\%
complete; conversion 40% complete) $\ldots \ldots \ldots \ldots$ 20,000 20,000 \quad 8,000
Total units accounted for $\ldots \ldots \ldots$ 180,000 $\underline{\underline{170,000}} \underline{\underline{165,000}}$

* $10,000 \times(100 \%-30 \%)=7,000$
** 170,000 units started into production - 20,000 units in ending work in process
$=150,000$ units started and completed

Problem 4-20 (continued)
Cost per Equivalent Unit

	Total cost	Materials	Conversion	Whole Unit
Cost to be accounted for:				
Work in process, July 1	\$ 13,400			
Cost added by the department (a)	383,600	\$139,400	\$244,200	
Total cost to be accounted for.	\$397,000			
Equivalent units (b)		170,000	165,000	
Cost per equivalent unit (a) \div (b)		\$0.82 +	\$1.48	\$2.30

Problem 4-20 (continued)

Cost Reconciliation

	$\begin{aligned} & \text { Total } \\ & \text { Cost } \end{aligned}$	Equivalent Units (EU)	
		Materials	Conversion
Cost accounted for as follows:			
Transferred to packaging:			
From the beginning inventory:			
Cost in the beginning inventory.......	\$ 13,400		
Cost to complete these units:			
Materials, at \$0.82 per EU	0	0	
Conversion, at \$1.48 per EU	10,360		7,000
Total cost from beginning inventory....	23,760		
Started and completed this month: 150,000 units $\times \$ 2.30$ per unit	345,000	150,000	150,000
Total cost transferred	368,760		
Work in process, J uly 31:			
Materials, at \$0.82 per EU.................	16,400	20,000	
Conversion, at \$1.48 per EU..............	11,840		8,000
Total work in process..........................	28,240		
Total cost accounted for	\$397,000		

Problem 4-21 (45 minutes)
Weighted-Average Method
Quantity Schedule and Equivalent Units

	Quantity Schedule		
Units to be accounted for:			
Work in process, J une 1 (materials 100\% complete, conversion 75% complete) 20,000			
Started into production..	180,000		
Total units to be accounted for.	$\underline{\underline{200,000}}$		
		Equivalent Units (EU)	
		Materials	Conversion
Units accounted for as follows:			
Transferred to bottling: ..	160,000	160,000	160,000
Work in process, J une 30 (materials 100\% complete, conversion 25% complete)	40,000	40,000	10,000
Total units accounted for	200,000	200,000	170,000

Problem 4-21 (continued)
Costs per Equivalent Unit

	Total Cost	Materials	Conversion
Cost to be accounted for:			
Work in process, J une 1	\$ 50,000	\$ 25,200	\$ 24,800
Cost added during J une.	573,500	334,800	238,700
Total cost to be accounted for (a)	\$623,500	\$360,000	\$263,500
Equivalent units (b)		200,000	170,000
Cost per equivalent unit (a) $\div(\mathrm{b})$		\$1.80	\$1.55
Cost Reconciliation			
	Total	Equival	Units (EU)
	Cost	Materials	Conversion
Cost accounted for as follows:			
Transferred to bottling:			
160,000 units $\times \$ 3.35$ per unit.	\$536,000	160,000	160,000
Work in process, J une 30:			
Materials, at \$1.80 per EU......................	72,000	40,000	
Conversion, at \$1.55 per EU....................	15,500		10,000
Total work in process...............................	87,500		
Total cost accounted for	\$623,500		

Problem 4-22 (45 minutes)
FIFO Method
Quantity Schedule and Equivalent Units

	Quantity Schedule		
Units to be accounted for:			
Work in process, J une 1 (materials 100\% complete, conversion 75% complete) 20,000			
Started into production......... Total units to be accounted for	180,000		
	$\underline{\underline{200,000}}$		
		Equivalent Units (EU)	
		Materials	Conversion
Units accounted for as follows:			
Transferred to bottling:			
From the beginning inventory..	20,000	0	5,000 *
Started and completed this month**	140,000	140,000	140,000
Work in process, J une 30 (materials 100\% complete, conversion 25% complete)	40,000	40,000	10,000
Total units accounted for	200,000	180,000	155,000
* 20,000 $\times(100 \%-75 \%)=5,000$			
** 180,000 units started into production - 40, $=140,000$ units started and completed	00 units in	ending work	in process

[^0]Problem 4-22 (continued)
Cost per Equivalent Unit

| | Total
 Cost | Materials | Conversion |
| :--- | ---: | :--- | :--- | | Whole |
| :---: |
| Unit |

© The McGraw-Hill Companies, Inc., 2006. All rights reserved.

Problem 4-22 (continued)

Cost Reconciliation

Problem 4-23 (45 minutes)

Weighted-Average Method

1. A completed production report follows:

Quantity Schedule and Equivalent Units

	Quantity Schedule		
Pounds to be accounted for:			
Work in process, May 1 (materials 100\% complete, labor and overhead $1 / 3$ complete).			
Started into production	167,000		
Total pounds to be accounted for	185,000		
		Equivalen	Units (EU)
		Materials	Overhead
Pounds accounted for as follows:			
Transferred to mixing .	170,000	170,000	170,000
Work in process, May 31 (materials 100\% complete, labor and overhead $2 / 3$ complete).	15,000	15,000	10,000
Total pounds accounted for..	185,000	185,000	180,000

Problem 4-23 (continued)
Costs per Equivalent Unit

Cost to be accounted for:
Work in process, May 1
\$ 21,800
\$ 14,600
\$ 7,200
Cost added during May.
360,200
Total cost to be accounted for (a) \$382,000
Equivalent units (b)
Cost per equivalent unit (a) \div (b) \qquad

Total Cost	Materials	 Overhead	Whole Unit
$\$ 21,800$	$\$ 14,600$	$\$ 7,200$	
$\underline{360,200}$	$\underline{133,400}$	$\underline{226,800}$	
$\$ 382,000$	$\underline{\$ 148,000}$	$\underline{\$ 234,000}$	
	185,000	180,000	
	$\$ 0.80$	$\$ 1.30=\$ 2.10$	

Cost Reconciliation

		Equivalent Units (EU)	
	Total Cost	Materials	Labor \& Overhead
Cost accounted for as follows:			
Transferred to mixing: 170,000 units \times $\$ 2.10$ per unit.	\$357,000	170,000	170,000
Work in process, May 31:			
Materials, at \$0.80 per EU ..	12,000	15,000	
Labor and overhead, at $\$ 1.30$ per EU .	13,000		10,000
Total work in process.	25,000		
Total cost accounted for	\$382,000		

Problem 4-23 (continued)

2. The weighted-average method mixes costs of the prior period with current period costs. Thus, under the weighted-average method, unit costs are influenced to some extent by what happened in a prior period. This problem becomes particularly significant when attempting to measure performance in the current period. Good cost control in the current period might be concealed to some degree by the unit costs that have been brought forward in the beginning inventory. The reverse could also be true in that poor cost control might be concealed by the costs of the prior period that have been brought forward and added in with current period costs.

Problem 4-24 (45 minutes)

FIFO Method
The completed production report follows:

Quantity Schedule and Equivalent Units

```
                    Quantity
                            Schedule
Gallons to be accounted for:
    Work in process, April }1\mathrm{ (materials 100% com-
        plete, conversion 80% complete)
    10,000
    Started into production.................................. 140,000
Total gallons to be accounted for....................... 150,000
Gallons accounted for as follows:
    Transferred to mixing:
        From the beginning inventory................... 10,000 0 0,000 *
        Started and completed this month** ............ 110,000 110,000 110,000
    Work in process, April }30\mathrm{ (materials 100%
        complete, conversion 60% complete) .......... 30,000 30,000 18,000
Total gallons accounted for .......................... \underline{150,000 140,000 垔全,0,00}
    * Work required to complete units in beginning inventory
** 140,000 units started - 30,000 units in ending work in process = 110,000 started and completed
```

Problem 4-24 (continued)
Costs per Equivalent Unit

	Total Cost	Materials	Conversion	Whole Unit
Cost to be accounted for:				
Work in process, April 1	\$ 39,000			
Cost added during April (a).............	571,000	\$259,000	\$312,000	
Total cost to be accounted for...........	\$610,000			
Equivalent units (b) .		140,000	130,000	
Cost per equivalent unit (a) \div (b)		\$1.85	\$2.40	\$4.25

Problem 4-24 (continued)

Cost Reconciliation

Total	Equivalent Units (EU)
Cost	Materials Conversion

Cost accounted for as follows:
Transferred to Mixing:
From the beginning inventory:
Cost in the beginning inventory \qquad \$ 39,000
Cost to complete these units:
Materials, at $\$ 1.85$ per EU.
0
Conversion, at $\$ 2.40$ per EU 4, 4, 400
0

43,800
Total cost from beginning inventory...........
Gallons started and completed during April: $110,000 \times \$ 4.25$ per unit

467,500
110,000 110,000
Total cost transferred to Mixing.
511,300
Work in process, April 30:
Materials, at $\$ 1.85$ per EU.
55,500
30,000
Conversion, at $\$ 2.40$ per EU............................. 43,200
Total work in process
98,700
Total cost accounted for
\$610,000

Problem 4-25 (30 minutes)

Weighted-Average Method

1. The equivalent units for the month would be:

	Quantity Schedule	Equivalent Units (EU)	
		Materials	Conversion
Units accounted for as follows:			
Transferred to next department.	190,000	190,000	190,000
Work in process, April 30 (materials 75\% complete, conversion 60\% complete) ...	40,000	30,000	24,000
Total units accounted for.	230,000	220,000	214,000

2.

| | Total | | | Whole |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | Cost | Materials | Conversion | Unit |

3.

Total units transferred................................... 190,000
Less units in the beginning inventory.............. 30,000
Units started and completed during April 160,000

Problem 4-25 (continued)

4. No, the manager should not be rewarded for good cost control. The Mixing Department's low unit cost for April occurred because the costs of the prior month have been averaged in with April's costs. This is a major criticism of the weighted-average method in that the costs computed for product costing purposes can't be used to evaluate cost control or to measure performance for the current period.
Problem 4-26 (90 minutes)
Weighted-Average Method
5. a. Work in Process-Refining Department 495,000
Work in Process-Blending Department 115,000
Raw Materials 610,000
b. Work in Process-Refining Department 72,000
Work in Process-Blending Department 18,000
Salaries and Wages Payable 90,000
c. Manufacturing Overhead 225,000
Accounts Payable 225,000
d. Work in Process-Refining Department 181,000
Manufacturing Overhead 181,000
d. Work in Process-Blending Department 42,000
Manufacturing Overhead 42,000
e. Work in Process-Blending Department 740,000
Work in Process-Refining Department..... 740,000
f. Finished Goods 950,000
Work in Process-Blending Department.... 950,000
g. Accounts Receivable 1,500,000
Sales 1,500,000
Cost of Goods Sold 900,000
Finished Goods 900,000

Problem 4-26 (continued)

2.

Accounts Receivable			
(g)	$1,500,000$		
Work in Process			
Refining Department			
Bal.	38,000	740,000	(e)
(a)	495,000		
(b)	72,000		
(d)	181,000		
Bal.	46,000		

Raw Materials			
Bal.	618,000	610,000	(a)
Bal.	8,000		

Work in Process			
Blending Department			
Bal.	65,000	950,000	(f)
(a)	115,000		
(b)	18,000		
(d)	42,000		
(e)	740,000		
Bal.	30,000		

Finished Goods

Bal.	20,000	900,000	(g)
(f)	950,000		
Bal.	70,000		

Accounts Payable
(c)

Sales
$1,500,000 \quad$ (g)

Manufacturing Overhead			
(c)	225,000	223,000	(d)
Bal.	2,000		

Accounts Payable		
	225,000	(c)

Salaries and Wages Payable		
	$90,000 \quad$ (b)	

Cost of Goods Sold		
(g) 900,000		

Problem 4-26 (continued)

3. The production report for the refining department follows:

Quantity Schedule and Equivalent Units
$\left.\begin{array}{llllll} & \begin{array}{c}\text { Quantity } \\ \text { Schedule }\end{array} \\ \text { Gallons to be accounted for: } \\ \text { Work in process, March } 1 \text { (materials } 100 \% \text { com- }\end{array}\right)$

Problem 4-26 (continued)

Costs per Equivalent Unit

[^1]
Problem 4-27 (60 minutes)

Weighted-Average Method

1. The equivalent units would be:

	Materials	Labor	Overhead
Units completed during the year.	900,000	900,000	900,000
Work in process, Dec. 31:			
300,000 units $\times 100 \%$	300,000		
300,000 units $\times 50 \%$		150,000	150,000
Total equivalent units (a)	1,200,000	$\underline{\underline{1,050,000}}$	$\underline{\underline{1,050,000}}$

The costs per equivalent unit would be:

	Materials	Labor $\$ 200,000$	Overhead $\$ 315,000$		
$\$ 189,000 *$				\quad	Whole
:---:					
Unit					

Problem 4-27 (continued)

2. The amount of cost that should be assigned to the ending inventories is:

3. The necessary adjustments would be:

	Work in	Finished	
	Process	Goods	Total
Cost to be assigned to inventories (above)	\$903,000	\$ 954,000	\$1,857,000
Year-end balances in the accounts	660,960	1,009,800	1,670,760
Difference	\$242,040	\$ (55,800)	\$ 186,240

Work in Process Inventory	242,040
Finished Goods Inventory ..	55,800
Cost of Goods Sold.	186,240

Problem 4-27 (continued)

4. The simplest computation of the cost of goods sold would be:

Beginning finished goods inventory
Units completed during the year............................. $\quad 900,000$
Units available for sale... 900,000
Less units in ending finished goods inventory _ 200,000
Units sold during the year...................................... 700,000
Cost per equivalent unit (from part 1)..................... $\quad \times \$ 4.77$
Cost of goods sold... \$3,339,000
Alternative computation:
Total manufacturing cost incurred:
Materials (part 1)... \$1,500,000
Labor (part 1) ... 2,310,000
Overhead (part 1).. 1,386,000
Total manufacturing cost...................................... 5,196,000
Less cost assigned to inventories (part 2)................ 1,857,000
Cost of goods sold.. \$3,339,000

Problem 4-28 (90 minutes)

Weighted-Average Method

1. a. Work in Process-Cooking Department 570,000
Work in Process-Bottling Department 130,000
Raw Materials
100,000
b. Work in Process-Cooking Department
80,000
Work in Process-Bottling Department t.
Salaries and Wages Payable400,000Accounts Payable
\qquad400,000
d. Work in Process-Cooking Department 235,000
Work in Process-Bottling Department. 158,000
Manufacturing Overhead 393,000
e. Work in Process-Bottling Department. 900,000
Work in Process-Cooking Department.. 900,000
f. Finished Goods 1,300,000
Work in Process-Bottling Department... 1,300,000
g. Accounts Receivable 2,000,000
Sales 2,000,000
Cost of Goods Sold 1,250,000
Finished Goods1,250,000

Problem 4-28 (continued)

2.

Accounts Receivable			
(g)	$2,000,000$		
Work in Process			
Cooking Department			
Bal.	61,000	900,000	(e)
(a)	570,000		
(b)	100,000		
(d)	235,000		
Bal.	66,000		

Finished Goods

Bal.	45,000	$1,250,000$	(g)
(f)	$1,300,000$		
Bal.	95,000		

Accounts Payable		
	400,000	(c)

Sales

Raw Materials			
Bal.	710,000	700,000	(a)
Bal.	10,000		

Work in Process Bottling Department Bal. $\quad 85,000$			
(a)	130,000		
(b)	80,000		
(d)	158,000		
(e)	900,000		
Bal.	53,000		

Manufacturing Overhead			
(c)	400,000	393,000	(d)
Bal.	7,000		

Salaries and Wages Payable		
	$180,000 \quad$ (b)	

Sales		
	$2,000,000 \quad(\mathrm{~g})$	

Problem 4-28 (continued)

3. The production report for the cooking department follows:

Quantity Schedule and Equivalent Units

	Quantity
	Schedule
Quarts to be accounted for:	
Work in process, May 1 (materials 60\% complete, labor and overhead 30\% complete)..	70,000
Started into production*	380,000
Total quarts accounted for	450,000

Quarts accounted for as follows: Transferred to bottling: \qquad 400,000
400,000 400,000 400,000
Work in process, May 31 (materials 70\% complete, labor and overhead 40\% complete).......... 50,000
Total quarts accounted for
450,000
$35,000 \quad 20,000 \quad 20,000$
435,000 420,000 420,000

* $(400,000+50,000)-70,000=380,000$

Problem 4-28 (continued)

Costs per Equivalent Unit

Case 4-29 (90 minutes)

- This case is difficult-particularly part 3, which requires analytical skills.
- Since there are no beginning inventories, it makes no difference whether the weighted-average or FIFO method is used by the company. You may choose to assign the problem specifying that the FIFO method be used rather than the weighted-average method.

1. The computation of the cost of goods sold follows:

Estimated completion	$\begin{gathered} \text { Transferred } \\ \text { In } \\ 100 \% \end{gathered}$	Conversion 30%
Computation of equivalent units:		
Completed and transferred out...	200,000	200,000
Work in process, ending:		
Transferred in, $10,000 \text { units } \times 100 \%$	10,000	
Conversion, $10,000 \text { units } \times 30 \%$		3,000
Total equivalent units	$\underline{\underline{210,000}}$	$\underline{\underline{203,000}}$
	Transferred In	Conversion

Cost to be accounted for:
Work in process..................... 0
Cost added during the month... \$39,375,000 \$20,807,500
Total cost to be accounted for
(a)
$\$ 39,375,000$
$\$ 20,807,500$
Equivalent units (above) (b) .
210,000
0

Cost per equivalent unit, (a) -
(b)
$\$ 187.50+\$ 102.50=\$ 290.00$
Cost of goods sold $=200,000$ units $\times \$ 290$ per unit $=\$ 58,000,000$

Case 4-29 (continued)

2. The estimate of the percentage completion of ending work in process inventories affects the unit costs of finished goods and therefore of the cost of goods sold. Gary Stevens would like the estimated percentage completion figures to be increased for the ending work in process. The higher the percentage of completion of ending work in process, the higher the equivalent units for the period and the lower the unit costs.
3. Increasing the percentage of completion can increase net operating income by reducing the cost of goods sold. To increase net operating income by $\$ 200,000$, the cost of goods sold would have to be decreased by $\$ 200,000$ from $\$ 58,000,000$ down to $\$ 57,800,000$.

The percentage of completion, X, affects the cost of goods sold by its effect on the unit cost, which can be determined as follows:

$$
\text { Unit cost }=\$ 187.50+\frac{\$ 20,807,500}{200,000+10,000 X}
$$

And the cost of goods sold can be computed as follows:

$$
\text { Cost of goods sold }=200,000 \times \text { Unit cost }
$$

Since cost of goods sold must be reduced down to $\$ 57,800,000$, the unit cost must be $\$ 289.00$ ($\$ 57,800,000 \div 200,000$ units). Thus, the required percentage completion, X, to obtain the $\$ 200,000$ reduction in cost of goods sold can be found by solving the following equation:

$$
\$ 187.50+\frac{\$ 20,807,500}{200,000+10,000 X}=\$ 289.00
$$

Case 4-29 (continued)

$$
\begin{aligned}
\frac{\$ 20,807,500}{200,000+10,000 X} & =\$ 289.00-\$ 187.50 \\
\frac{\$ 20,807,500}{200,000+10,000 X} & =\$ 101.50 \\
\frac{200,000+10,000 X}{\$ 20,807,500} & =\frac{1}{\$ 101.50} \\
200,000+10,000 X & =\frac{\$ 20,807,500}{\$ 101.50} \\
200,000+10,000 X & =205,000 \\
10,000 X & =205,000-200,000 \\
10,000 X & =5,000 \\
X & =\frac{5,000}{10,000}=50 \%
\end{aligned}
$$

Thus, changing the percentage completion to 50% will decrease cost of goods sold and increase net operating income by $\$ 200,000$ as verified on the next page.

Case 4-29 (continued)

3. (continued)

Estimated completion	$\begin{gathered} \text { Transferred In } \\ 100 \% \end{gathered}$	Conversion 50\%	
Computation of equivalent units:			
Completed and transferred out	200,000	200,000	
Work in process, ending:			
Transferred in, 10,000 units $\times 100 \% \ldots$.	10,000		
Conversion, 10,000 units $\times 50 \% \ldots .$.		5,000	
Total equivalent units.	$\underline{\underline{210,000}}$	205,000	
	Transferred In	Conversion	Whole Unit
Cost to be accounted for:			
Work in process...	0	0	
Cost added during the month.	\$39,375,000	\$20,807,500	
Total cost to be accounted for (a)	\$39,375,000	\$20,807,500	
Equivalent units (above) (b) ..	210,000	205,000	
Cost per equivalent unit, (a) \div (b)	\$187.50	+ \$101.50	=\$289.00

Cost of goods sold $=200,000$ units $\times \$ 289$ per unit $=\$ 57,800,000$

Case 4-29 (continued)

3. (continued)

The following is an alternative approach to solving this problem:
o The additional income needed $=\$ 200,000 \div 200,000$ units $=\$ 1$ per unit
0 The cost transferred in cannot be changed, so the conversion cost must be reduced from $\$ 102.50$ to $\$ 101.50$ per EU.
0 Therefore, the equivalent units for conversion need to be: $\$ 20,807,500 \div \$ 101.50$ per EU $=205,000$ EUs.
o 205,000 EUs - 200,000 units transferred out = 5,000 EU in WIP
o $5,000 \mathrm{EU} \div 10,000$ units in WIP $=50 \%$ complete

Case 4-29 (continued)
4. Mary is in a very difficult position. Collaborating with Gary Stevens in subverting the integrity of the accounting system is unethical by almost any standard. To put the situation in its starkest light, Stevens is suggesting that the production managers lie to get their bonus. Having said that, the peer pressure to go along in this situation may be intense. It is difficult on a personal level to ignore such peer pressure. Moreover, Mary probably prefers not to risk alienating people she might need to rely on in the future. On the other hand, Mary should be careful not to accept at face value Gary Stevens' assertion that all of the other managers are "doing as much as they can to pull this bonus out of the hat." Those who engage in unethical or illegal acts often rationalize their own behavior by exaggerating the extent to which others engage in the same kind of behavior. Other managers may actually be very uncomfortable "pulling strings" to make the target profit for the year.
From a broader perspective, if the net profits reported by the managers in a division cannot be trusted, then the company would be foolish to base bonuses on the net profit figures. A bonus system based on divisional net profits presupposes the integrity of the accounting system. However, the company should perhaps reconsider how it determines the bonus. It is quite common for companies to pay an "all or nothing" bonus contingent on making a particular target. This inevitably creates powerful incentives to bend the rules when the target has not quite been attained. It might be better to have a bonus without this "all or nothing" feature. For example, managers could be paid a bonus of $x \%$ of profits above target profits rather than a bonus that is a preset percentage of their base salary. Under such a policy, the effect of adding that last dollar of profits that just pushes the divisional net profits over the target profit will add a few pennies to the manager's compensation rather than thousands of dollars. Therefore, the incentives to misstate the net operating income are reduced. Why tempt people unnecessarily?

Case 4-30 (45 minutes)

Weighted-Average Method

1. The production report follows:

Quantity Schedule and Equivalent Units

	Quantity Schedule
Units to be accounted for:	
Work in process, April 1 (materials 100\%	
complete, conversion 60% complete)	450
Received from the preceding department	$\underline{1,950}$
Total units accounted for	$\underline{\underline{2,400}}$

| | Equivalent Units (EU) | | |
| :--- | ---: | ---: | ---: | ---: |
| | | Transferred
 In | Materials Conversion |

[^2]
Case 4-30 (continued)

Costs per Equivalent Unit

Case 4-30 (continued)

Cost Reconciliation

	Total Cost	Equivalent Units (EU)		
		$\begin{gathered} \text { Transferred } \\ \text { In } \end{gathered}$	Materials	Conversion
Cost accounted for as follows:				
Transferred to finished goods:				
1,800 units $\times \$ 21.72$ per unit	\$39,096	1,800	1,800	1,800
Work in process, April 30:				
Transferred in cost, at \$9.17 per EU.	5,502	600		
Materials, at \$4.55 per EU	0		0	
Conversion, at \$8.00 per EU	1,680			210
Total work in process.	7,182			
Total cost accounted for...	\$46,278			

2. The unit cost figure in the report prepared by the new assistant controller is high because none of the cost incurred during the month was assigned to the units in the ending work in process inventory.

Case 4-31 (60 minutes)

1. The production report follows:

Quantity Schedule and Equivalent Units

Case 4-31 (continued)

Costs per Equivalent Unit

Total Cost	Transferred In	Materials	Conversion	Whole Unit
Cost to be accounted for:				
Work in process, April 1. \$ 8,208				
Cost transferred in or added (a) 38,070	\$17,940	\$6,210	\$13,920	
Total cost to be accounted for............ \$46,278				
Equivalent units (b)	1,950	1,350	1,740	
Cost per equivalent unit (a) $\div(\mathrm{b}) \ldots .$.	\$9.20	\$4.60	\$8.00	$=\$ 21.80$

Case 4-31 (continued)

Cost Reconciliation

	Total Cost	Equivalent Units (EU)		
		Transferred In	Materials	Conversion
Cost accounted for as follows:				
Transferred to finished goods:				
From the beginning inventory:				
Cost in the beginning inventory.....	\$ 8,208			
Cost to complete these units: Conversion, at \$8 per EU .	1,440			180
Total cost from beginning inventory..	9,648			
Units started and completed: 1,350 units $\times \$ 21.80$ per unit	29,430	1,350	1,350	1,350
Total cost transferred to finished goods.	39,078			
Work in process, April 30:				
Transferred in, at \$9.20 per EU	5,520	600		
Materials, at \$4.60 per EU................	0		0	
Conversion, at \$8.00 per EU.............	1,680			210
Total work in process.........................	7,200			
Total cost accounted for	\$46,278			

Case 4-31 (continued)

2. The effects of the cost-cutting will tend to show up more under the FIFO method. The reason is that the FIFO method keeps the costs of the current period separate from the costs of prior periods. Thus, under the FIFO method, management will be able to see the effect of price increases on unit costs without any distorting influence from what has happened in the past.
Under the weighted-average method, however, costs carried over from the prior period are averaged in with costs of the current period, which will tend to reduce somewhat the impact of increased materials prices on current period unit costs.

Group Exercise 4-32

The answer to this exercise will depend on the industry that the students select to study.

[^0]: © The McGraw-Hill Companies, Inc., 2006. All rights reserved.

[^1]: © The McGraw-Hill Companies, Inc., 2006. All rights reserved.

[^2]: © The McGraw-Hill Companies, Inc., 2006. All rights reserved.

